LINEAR PROGRAMMING METHOD FOR
RATIONAL APPROXIMATION

BY
JONATHAN HAR-EL AND SHMUEL KANIEL

ABSTRACT

Development of a new algorithm, based on linear programming, for the com-
putation of the best rational approximation of a continuous function.

1. Introduction

Let f(x) be a continuous function defined on some finite interval [a,b]. Let
R, denote the class of rational functions of the form

(N R(x) = g((x; (12:.0 pjx’)/(jéoqjxf)

where Q(x) > 0 in [a, b].

It is well known that there exists a unique function, R* € R, , of best approxima-
tion in the maximum norm [1].

Various algorithms for computing R* are suggested. The Remes algorithms (see
[4], [6], [9]) are fast, but their convergence is assured only if a sufficiently good
initial approximation is used. The differential correction algorithm (given in [2],
[3]) always converges, but the volume of computation is prohibitive. Other
algorithms (given in [2], [5], [8]) are neither convergent nor fast. Here we
develop a new algorithm, based on linear programming. It is relatively fast and
convergence is assured in all cases.

2, The linear programming algorithm

Given

ReR;,, R(x) = g?:c; (jZ:,o pjxf)/(jé:loqjxj), 0(x)>0in [a,b],
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denote p = (po.**,P)s 4 = (9o, " qm), and denote S(x,p,q) = R(x) — f(x).
Denote S*(x) = R*(x) - f(x) where R* is the best approximation to f in R,,,.
Let RV e R, ,, be an initial approximation to f.

Let x(R), i =1,--+, N(R) be the positive local maxima and the negative local
minima of S(x) = R(x) ~ f(x). Denote:

.i
)] 4 (R) = ( (R) = ( )= _Q(T and
_ _ x{-P (x:)
3) ﬂij(R) = (x,(R)) ( 0= [Q(xs)]z

Denote by R® the Kth approximation to f. Denote S®(K) = R®(x) — f(x).
Denote o,{¥and B{“the quantities defined in (2) and (3) where R is substituted
instead of R.

For the variables &;, j = 0,--,], ;,j = 0,---,m and & solve the following
linear programming problem.

LINEAR PROGRAMMING PROBLEM (LP1). = Maximize ¢ under the following
constraints:

“) 0<e= " StE “’

) —-1=<¢,s1forj=0,-,1,

6 —1Sn,.<_1forj=0...m

M sign SUO({®) [P + z A%+ z B

+eg|S$®] for i = 1,---,N(K).

Then set
1

®) PE D) = PO(x) 4+ Ax T &% and
j=0

) 0 V(x) = 0(x) + Ag 2 n§yOx!

where &, 7§ is a solution (not necessarlly unique) of LP1, and Ay minimizes
(10) d(3) = || SC-, p'® + 2&®, g® + %) |.

Clearly d(Ax) £d(0) = | S™]|. It will be shown that d(Ag) tends to
PP
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3. Convergence

We prove convergence with the following mild assumption. For any Re R;,
the number of positive maxima as well as negative minima of S = R — fin [a, b]
is finite. In this case the linear programming problem LP1 is well defined. Denote
dg = | S™|. Then by (10) it follows that dy., < dx. We will prove that dg
tends to d* = || S*|.

PROPOSITION 1. There exists a sequence K, for which R®"is convergent.

PrOOF.
[RO] = [R® ~f+ 5] STR® = f] + /] = die+ 1]

Since dy <d, it follows that R'®is bounded. Hence by a standard argument, it is
possible to choose a convergent subsequence. Denote the limit of R~ by R.
Assume that R # R*. Any standard proof of the characterization of R* (see [1]) is
based on the following two propositions.

PROPOSITION 2. Denote by M the set of points x; in [a,b] for which
|SGxip,@)| = | SC.p,q) |- Let Ax)= X, a;x’ and B(x) = Tuobx’ be such
that

(11)  sign[Q(x)A(x;) — P(x)B(x))] # sig: S(x;, p, 9).
Then for all 1 sufficiently small

(12) | SC-, p + Aa,q + Ab) | < || SC, p, @) -

PROPOSITION 3. If R # R* then there exist A(x), B(x) satisfying (11) and
afortiori (12).

The choice of the linear programming problem LP1 was motivated by the
following reasoning. We can look at the notations (2) and (3), the linear program-
ming problem LP1, and the problem (8)~(9) for a general function R = P/Q
€R;, and deviation S(x) = R(x) —f(x). Now we establish the following
proposition.

PROPOSITION 4. Let A(x) = X}.q a;x, B(x) = XT_obx!. Then inequalities
(4)H7) are satisfied for some € > 0 (not necessarily the best) and ¢ = wa, n = wb
where w > 0 if and only if (11) is satisfied for A(x) and B(x).

PRrROOF. Suppose that there exist A(x) and B(x) satisfying (11).
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Q0x)A(x) — P(x)B(x;)

) A(x) _ Px) ) ! x! m  xIP(x)
Q(‘)[Q() ity B¢ "] Q("’)[Z oy Zob’Q’(XD]
Now recall that
x{ _ _X{P (x) _
R C

Hence
1l m
(13) Q(x)A(x) — P(x)B(x) = Q*(x) [ Zoaya+ X ﬂubf]-
Jj=0 =0

Define now ¢ = wa, n = wb where w > 0. Since Q*(x;) > 0 it follows from (11)
and (13) that

1 m
(14) sign(x,);ésign[z &+ X ﬁ,,-n,], x;eM.
JBO juo

Let o be chosen to be so small that (5) and (6) are satisfied. Restrict it, furthermore,
so that
1 m
a9 0<|T a+ I pyy [ s[Se)] =S| mem.
j =Q j =()
It follows that (14) and (15) imply the existence of &, > 0 for which (7) is true for

all x,e M. As for x, ¢ M | S(x)| < | S|. Denote now & = min,,, | S| - | S(x)|-
Then restrict w again, if necessary, so that

i m
(16) |Z aty+ = B |45, xeM.
j=0 j=0

Thus (4)~«7) will be satisfied for ¢ = min {¢,, 46}. Conversely, if (4)~(7) are satisfied
for some &> 0 then

1 m
an sign [ Tl + X ﬁur],] # sign S(x;, p, q), x,eM,
J=0 J=0
Thus if a; = ¢}, b; = n; then for the corresponding polynomials A(x), B(x)

relation (11) holds via (13).

PROPOSITION 5. Suppose that R # R*; then there exist §>0, é>0 and
fi>0 so that for all ReR,, such that "R - R" < 8 there exists a solution

(& &,1) = (&, ¢,1) (R) of (4)(7) with € 2 18 so that
(18) “li“ [5C,p+48qa+ 20| = |SC.p )| - &

Proor. We use a standard compactness argument. If R # R*, then by Proposi-
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tion 5 it is possible to solve the inequalities (4)-(7) for R, ¢ > 0, &, #. Since the

extreme points of S(x, p, q) are continuous functions of p and gq it follows, for &
sufficiently small that

1 m
(19) sgmSOO[S0)+ T wfy + 3 p |+ i)

where “ R—-R ” < 6 and y; are the extreme points of S(x). If we maximize as we
do in the algorithm, we certainly can derive &R) = 1é.

Suppose now that (18) is false. This means that there exist R'¥), &&) (K
(not coinciding with those generated in the algorithm) such that | R — K| <3
and for which (4)-(7) hold with &4 = & while

20)  min [[SC;, p* + 285, g® + 20 | 2 [ SC, p®, 4| - pk
A

where ux—0 as K — 0.

Extract now a subsequence K, for which p&»), g(Kn) g(Kn) qpq  p(Kn)
converge to p°, &°, q° and #° respectively. For R® we can solve the inequalities
(4)«(7) with &° = 4&. Therefore, by Propositions 2 and 3, for the polynomials
A%(x) = X o&7x! and B°(x) = XJ.onjx’ there exist ° > 0 and p° > 0 so that

@1 I SC.p° +2°2°, q° + 2°1%) | £ [ SC, °, 4 | — w°
By continuity for K = K, sufficiently large we obtain
(22) 1S p™ 4+ 2%, ¢ + 2% | < | (-, p°, ¢ || — w°

contrary to (20).
Now the proof of convergence is clear. If the sequence R‘® "’ of Proposition 1
converges to R # R* then for K = K, sufficiently large
@)  min|S(, PP+ 2P, ¢® + M) < | SC, PP, ¢ )] - B
Hence for K = K, by (8) and (9) and Proposition 5,
(9 [5G 5545, g D) | <SG B, g% -

We assumed the sequence S‘¥to be convergent, thus (24) can hold for only a
finite number of indices, a contradiction.

4. Application

Theoretically, it is sufficient to consider in (7) only the global extrema, that is,
the points x{* for which |S(x{*)| = | $"*’||. The inclusion of all positive
local maxima and negative local minima has been done just to achieve better
practical efficiency.
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Enlarging the number of points x,*in (7) can only increase the improvement,
| %] —]|S * )|, and thereby accelerate convergence. However, adding too many
points leads to a big system of constraints in the linear programming problem.

Another possible strategy is to consider all local extrema if their number does
not exceed / + m + 2, and if there are more than [ + m + 2 local extrema, to take
only those local extrema x for which |S™(x)| > ¢| S| where 0 <c <1 is
some constant. A fair choice could be ¢ = 1.

ExaMpPLE. The following is an example of rational approximations computed
by the proposed algorithm. Chose f(x) =sinx,a= —-1,b=1,1=4, m=4.
.99749x — .15652x3

1 ’
the local extrema of S)(x) are as follows.

(i) For R™M(x) =

Point Value
—1.0000E + 00 4.9953E — 04
—8.0767E — 01 —4.9953E - 04
—3.0768E — 01 4.9953E — 04

3.0768E — 01 —4.9953E — 04

8.0767E — 01 4.9953E — 04

1.0000E + 00 —4.9953E — 04
x —.10713x3

.. 3), —
(@) For R() = 1 05956x7 + 0015285

the local extrema of S®)(x) are as follows.

Point Value
—1.0000E + 00 1.5990E — 06
—8.7078E — 01 —1.5255E — 06
—5.1551E - 01 8.6111E — 07
—9.7562E — 02 —4.2207E — 08

9.7564E — 02 4.2267E — 08

5.1551E - 01 —8.6105E — 07

8.7079E — 01 1.5256E — 06

1.0000E + 00 —1.5989E — 06

x — .10476x3

(iii) For R®'(x) =

1 + .061905x2 + .0019952x4 "’
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the local extrema of S®(x) are as follows.

Point Value
—1.0000E + 00 2.4363E — 08
—9.3847E - 01 —2.4363E — 08
—7.6255E — 01 2.4363E — 08
~4.9590E — 01 ~2.4363E — 08
—1.7182E - 01 2.4363E — 08

1.7180E — 01 —2.4363E — 08

4.9588E — 01 2.4363E — 08

7.6254E - 01 —2.4363E — 08

9.3847E — 01 2.4363E — 08

1.0000E + 00 —2.4363E - 08
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