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ABSTRAC'T 

Development of a new algorithm, based on linear programming, for the com- 
putation of the best rational approximation of a continuous function. 

1. Introduction 

Let f(x)  be a continuous function defined on some finite interval [a, b]. Let 

R:,m denote the class of rational functions of the form 

. ,x, 
(1) R(x) = Q ~  = 

where Q(x) > 0 in [a, b]. 

It is well known that there exists a unique function, R* ~ Rt,,n of best approxima- 

tion in the maximum norm [1]. 

Various algorithms for computing R* are suggested. The Remes algorithms (see 

[4], [6], [9]) are fast, but their convergence is assured only if a sufficiently good 

initial approximation is used. The differential correction algorithm (given in [2], 

[3]) always converges, but the volume of computation is prohibitive. Other 

algorithms (given in [2], [5], [8]) are neither convergent nor fast. Here we 

develop a new algorithm, based on linear programming. It is relatively fast and 

convergence is assured in all cases. 

2. The linear programming algorithm 

Given 

R ~ R~,m, R(x) = 
l 

P(X)Q(x) = C~oP'XS) / (j~oq'X') ' Q(x) >O in [a'b]' 
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denote p = (Po,'",P3, q = (qo,'",qm), and denote S(x,p,q) = R(x) - f ( x ) .  

Denote S*(x) = R * ( x ) - f ( x )  where R* is the best approximation to f in Rl,m. 

Let R t*) ~ Rt. m be an initial approximation to f. 

Let xi(R), i = 1, ..., N(R) be the positive local maxima and the negative local 

minima of S(x) = R(x) - f (x) .  Denote: 

os OR x/ 
(2) oqj(R) = -~l(x,(R))=-~-~j(x,) = Q(-~) and 

0s OR - xl.  P(x3 (3) ,e,j(R) = ~(x,(R)) = ~(xO- ~ ( ~  . 

Denote by R (g) the Kth approximation to f. Denote S(r)(K) = R(r)(x) - f ( x ) .  

Denote ~i}K)and fl~X)the quantities defined in (2) and (3) where R tt~ is substituted 

instead of R. 

For  the variables ~1, J = 0, ..., l, r/j, j = 0,-.., m and e solve the following 

linear programming problem. 

LINEAR PROGRAMMING PROBLEM (LP1). 

constraints: 

(4) 

(5) 

(6) 

(7) 

Then set 

(8) 

Maximize e under the following 

- 1 __< ~j_< 1 f o r j  = O,...,l, 

- l < r / j = l f o r j ~ O , . . .  m, 

I m 

sign s(K)(x~ K)) [Str)(x~ r)) + ~-, ~'lj'(K)'g%.l + ~.~ fl(iK)r/j J J1 
1=0 j=O 

+~ = 11 s'K' It for i = 1 ,  .'.,N(K). 

! 

PCK+t)(X) = P(K)(x) + 2K ]~ ~rC)X~ and 
./=0 

(9) Q(K+I)(X) = Q(r)(x) + lr s r/~r)xJ 
I=0 

where ~x), r/~r) is a solution (not necessarily unique) of LP1, and 2 r minimizes 

o0) dO) = II s< ,p'K' + ~r q '~ '+  ~r II 

Clearly d ( 2 x ) < d ( 0 ) =  I]Str~]]. It will be shown that d(2D tends to 

d * =  (l R* - f l l .  
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3. Convergence 

We prove convergence with the following mild assumption. For any R ~ Rz. m 

the number of positive maxima as well as negative minima of S = R - f in I-a, b] 

is finite. In this case the linear programming problem LP1 is well defined. Denote 

d r - - I I s ' r ' l l  . Then by (10) i t  follows that dr+ 1 < d r. We will prove that d r  

tends to d * =  IIS* 1[. 

PROPOSITION 1. There exists a sequence K n for which R oK')is convergent. 

PROOF. 

II R'K' 11 = II R 'K ' -S  +sll - II R 'r' -s l l  + IIsll = dr + Ilsll. 

Since dK<d 1 it follows that Rtr~is bounded. Hence by a standard argument, it is 

possible to choose a convergent subsequence. Denote the limit of R CK'~ by _~. 

Assume that/~ ~ R*. Any standard proof of the characterization of R* (see [-1]) is 

based on the following two propositions. 

PROPOSITION 2. Denote by M the set of points xi in [a,b] for which 

IS(x,, p, q)[ = [[ S(' ,  p, q)I[" Let A(x)= ]~ •o alxl and B(x) = ]~ffio blxl be such 

that 

(11) sign [Q(x,)A(xi) - P(xi)B(x,)] ~ sign S(x~, p, q). 
~tleM 

Then for all 2 sufficiently small 

(12) Ils( ,p + ,~a,q + ~b)ll < It s(., p, q) lI. 

PROPOSITION 3. I f  R ~ R* then there exist A(x), B(x) satisfying (11) and 

afortiori (12). 

The choice of the linear programming problem LP1 was motivated by the 

following reasoning. We can look at the notations (2) and (3), the linear program- 

ming problem LP1, and the problem (8)--(9) for a general function R = P/Q 

eRl.m and deviation S ( x ) =  R ( x ) - f ( x ) .  Now we establish the following 

proposition. 

PROPOSITION 4. Let A(x) t = ~,iffio aj xl, B(x) = E~'=objxL Then inequalities 

(4)--(7) are satisfied for some 8 > 0 (not necessarily the best) and ~ = coa, ~l = cob 

where o~ > 0 if and only if (11) is satisfied for A(x) and B(x). 

PROOF. Suppose that there exist A(x) and B(x) satisfying (11). 
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O.(x3a(x3 - P(x,)B(x~) 

--2- , I'A(x3 
= ~ tx,,I.~-x 7 

Now recall that 

Hence 

(13) 

J. H A R - E L  A N D  S. K A N I E L  

P(x~) B(xi ) = Q2(xi) 
Q~(x,) oar Q(x,) 

x{ - x lP(x,)  
Q(x,) = %'  Q2(x,) = flu. 

Q(xOA(xl) - P(x~)B(x~) = Q2(x~) + ~ flubj o ~ j==o 

Israel J. Math., 

- - ~  -- J~=o bj Q--~-~] 

Define now ~ = wa, rl = cob where co > 0. Since Q2(x 3 > 0 it follows from (11) 

and (13) that 

(14) sign (x~) # sign ~j  ~j + ~ flo.~/i , xi E M. 
0 J~O 

Let oJ be chosen to be so small that (5) and (6) are satisfied. Restrict it, furthermore, 
so that 

1 m 

~ o  op,~j Is(x,)l Ilsl!. x , ~ M  

It follows that (14) and (15) imply the existence ofe~ > 0 for which (7) is true for 

all x, E M. As for x, ~ M I s(x,) I < II s Ii Denote now ~ = min~,, . l l  S II - I S(x~ I 
Then restrict co again, if necessary, so that 

1 

(16) I ~  ot,j~j + ~ fl,fll, I~-�89 x,~M. 
J=O J=O 

Thus (4)--(7) will be satisfied for e = min {el, �89 Conversely, if (4)-(7) are satisfied 

for some 8 > 0 then 

f' ] (17) sign Yl. eo~j + ~" flutiJ # sign S(x,p,q) ,  x~sM. 
J=O J=,O 

Thus if aj = ~j ,  b j  = rIj then for the corresponding polynomials A(x), B(x) 

relation (11) holds via (13). 

PROi, OSmON 5. Suppose that 1~ # R*; then there exist S >  0, ~ > 0  and 

> 0 so that for all R ~Rt. m such that II R - R II < S there exists a solution 

(e, ~, ~1) = (e, ~, tl) (R) of (4)-(7) with e ~ �89 so that 

(18) min Ils(.,p+ Ar + ~r z II s ( ' , p  q ) [ I -P -  
,t 

PROOF. We use a standard compactness argument. If R # R*, then by Proposi- 
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tion 5 it is possible to solve the inequalities (4)--(7) for/~,  g > 0, ~, 4. Since the 

extreme points of S(x,p, q) are continuous functions of p and q it follows, for 

sufficiently small that 

[ ' ] (19) signS(y3 S(y3+ ~, ct,j~j + ~ fl,fIj +�89 <]]Sll 
1=o 1=o 

where Jr R - ~ I ~, < ,~ and y, are the extreme points of S(~). I f  we maximi,e as we 

do in the algorithm, we certainly can derive e(R) > �89 

Suppose now that (18) is false. This means that there exist R Cry, ~<x), F/<r) 

(not coinciding with those generated in the algorithm) such that I1Rtx)- k II < 
and for which (4)-(7) hold with er ~ �89 while 

where /~r "-* 0 as K ~ oo. 

Extract now a subsequence K~ for which ptr.), ~cr.),qCX.)an d tltx.) 
converge to pO, ~o, qO and r/~ respectively. For R ~ we can solve the inequalities 

(4)-(7) with c o >  �89 Therefore, by Propositions 2 and 3, for the polynomials 
AO(x) = vI ~o~j vm .o~j 1o #o ,-,j=o,,j-~ and B~ = ,-,j-o,~j., there exist > 0 and > 0 so that 

(21) lis(.,vo+~o~o, qO+~Oe)il<_lls(.,pO, qO)ll-~,o. 
By continuity for K = K. sufficiently large we obtain 

(22) II S(" pCr) + ).o~tK), qCr, + ).or/cr, ) II :-< II s(. .  pc~,. qc~,)II - #o 

contrary to (20). 

Now the proof of convergence is clear. If the sequence R cr'~ of Proposition 1 

converges to R #: R* then for K = K, sufficiently large 

(23) rain II s(., ~,~, + ~r qC,,, + ~,~,,,,)II :-< II s(., pC,,,, r - ~. 
Hence for K = K~, by (8) and (9) and Proposition 5, 

(24) l[ s(. .  p,~+,~, q,~+ ~,)II z II s(. .  pC,,,, q,,)II - ~. 
We assumed the sequence StX')to be convergent, thus (24) can hold for only a 

finite number of indices, a contradiction. 

4. Application 
Theoretically, it is sufficient to consider in (7) only the global extrema, that is, 

the points x~ r) for which I s , % ~ ' ) l  = I1 s" ' l l .  The inclusion of all positive 

local maxima and negative local minima has been done just to achieve better 

practical efficiency. 
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E n l a r g i n g  the n u m b e r  o f  po in t s  xl(X)in (7) can  on ly  increase  the i m p r o v e m e n t ,  

II II-IIs'   % a n d  the reby  accelerate  convergence .  However ,  a d d i n g  too  m a n y  

p o i n t s  leads to a b ig  system o f  cons t r a in t s  in  the l i nea r  p r o g r a m m i n g  p rob l em.  

A n o t h e r  poss ib le  s t ra tegy is to cons ide r  al l  local  ex t rema  if  the i r  n u m b e r  does  

n o t  exceed l + m + 2, a n d  i f  there  are m o r e  t h a n  l + m + 2 local  ex t rema,  to take  

o n l y  those  local  ex t r ema  x for  which  Is' 'cx)l > clls' 'll where  0 < c  < l is 

some  cons tan t .  A fair  choice  cou ld  be c = �88 

EXAMPLE. The  fo l lowing  is a n  example  o f  r a t i ona l  a p p r o x i m a t i o n s  c o m p u t e d  

by  the  p roposed  a lgo r i t hm.  Chose  f(x) = sin x, a = - 1, b = 1, l = 4, m = 4. 

(i) F o r  R(1)(x) = .99749x - .15652x 3 
1 

the  local  ex t rema  o f  stl)(x) are as fol lows.  

P o i n t  Value  

- 1.0000E + 00 4.9953E - 04 

- 8.0767E - 01 - 4 . 9 9 5 3 E  - 04 

- 3 .0768E - 01 4.9953E - 04 

3.0768E - 01 - 4 . 9 9 5 3 E  - 04 

8.0767E - 01 4.9953E - 04 

1.0000E + 00 - 4 . 9 9 5 3 E  - 04 

x - . 1 0 7 1 3 x  a 
(ii) F o r  RC~)(x) = 1 + .05956x 2 + .0015244x 4' 

the  local  ex t rema  o f  S(3)(x) are as fol lows.  

P o i n t  Va lue  

- 1 .0000E + 00 1.5990E - 06 

- 8 . 7 0 7 8 E -  01 - 1.5255E - 06 

- 5 . 1 5 5 1 E  - 01 8.6111E - 07 

- 9 . 7 5 6 2 E  - 02 - 4 . 2 2 0 7 E  - 08 

9.7564E - 02 4.2267E - 08 

5.1551E - 01 - 8 . 6 1 0 5 E  - 07 

8.7079E - 01 1.5256E - 06 

1 . 0 0 0 0 E + 0 0  - 1 . 5 9 8 9 E  - 06 

x - . 1 0 4 7 6 x  3 
(i i i)  F o r  R(8J(x) = , . . . . .  ,~. .~ . , ~ , , , , ~ . . ~ ,  

1 + .061905x 2 + .0019952x ~ 
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t h e  l o c a l  e x t r e m a  o f  s < a ) ( x )  a r e  a s  f o l l o w s .  

P o i n t  

- 1 . 0000E  + 0 0  

- 9 . 3 8 4 7 E  - 0 1  

- 7 . 6 2 5 5 E  - 0 1  

- 4 . 9 5 9 0 E  - 0 1  

- 1 . 7 1 8 2 E  - 0 1  

1 . 7 1 8 0 E  - 0 1  

4 . 9 5 8 8 E  - 0 1  

7 . 6 2 5 4 E  - 0 1  

9 . 3 8 4 7 E  - 0 1  

1.O000E + O 0  

V a l u e  

2 . 4 3 6 3 E  - 0 8  

- 2 . 4 3 6 3 E  - 0 8  

2 . 4 3 6 3 E  - 0 8  

- 2 . 4 3 6 3 E  - 0 8  

2 . 4 3 6 3 E  - 0 8  

- 2 . 4 3 6 3 E  - 0 8  

2 . 4 3 6 3 E  - 0 8  

- 2 . 4 3 6 3 E  - 0 8  

2 . 4 3 6 3 E  - 0 8  

- 2 . 4 3 6 3 E  - 0 8  

3 4 9  
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